SIMULATING MULTIDIMENSIONAL PROBLEMS OF
HEAT CONDUCTION WITH PHASE TRANSFORMATIONS
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The special two-dimensional heat conduction problem in the solidification of a melt illustrates
how three-dimensional problems with moving boundaries can be simulated on an "SEI-2"
static electrical integrator.

The problem is stated as follows: to calculate the transient temperature fields and the progress of
the solidification front in a melt—-solid system (Fig.1). It is assumed that phase transformations of the
first kind occur here, that the heat transfer by natural convection inside the melt is negligible, and that
the heat transfer from the surfaces X =1 and Y = 1 to the surrounding medium is both radiative and
convective,

Mathematically this problem reduces to integrating the following system of differential equations
(by virtue of the prevailing symmetry here, only one quadrant of a cross section is considered, Fig, 1):
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Fig. 2. Schematic diagram of the arithmetic units in the static electrical integrator for calculatingthe
temperature field: on the first fraction step (k + 1/2) (a) and on the second fraction step (k + 1) (b)
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For a numerical solution of system (8)-(13) we use the straight-through computation schedule [1].
As a result, we obtain the following system of finite-difference equations on the first fraction step k +1

/2):
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The last term in Eqgs. (15) and (16) respectively is obtained from the heat balance equation for the
AX/2 layer adjoining the X =1 (or X = 0) surface. The resulting system of difference equations is simulated
on an "SEI-2" static electrical integrator [2, 3]. The arithmetic unit for the first fraction step is con-
nected into a circuit shown in Fig. 2a with the following values of resistors:

[N

R=1; Ry, =Awm(0, )/AX

" L (22)
+3 T
1 ) 2Ata (69, %) 2Ata (@N, =)
Re = —m 0 Reem =gz Rove= =g
Bi* (Oy,.0 ) AX
and for the second fraction step into a circuit shown in Fig. 2b with the following values of resistors:
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The simulation conditions (22)-(23) are based on the correspondence between the equations of voltage-
potential distribution at the respective nodes of the arithmetic circuit and the difference equations for the
same nodal points in the network field.

The solution is carried out in the following sequence: to the free terminal of each Ro,n(®§ +p(1/ 2)
resistors (Fig. 2a) one applies, through plugs, a voltage potential from the function potentiometer R2*)
which is numerically equal to &, , at the instant of time 1 = kA7, while to the free terminal of each
R (®k * “/ 2) )} resistor one apphes a voltage potential from the linear potentiometer R1 which isnumerically

equal to @amb and @Ef}" (/2), Since the value of ok (1/2) depends on & and © on the scanned layer of time
intervals, it is necessary to correct the value of ®Iéf; (1/2) and this is achieved by connecting additional

resistors R along a null-compensation galvanometer to the (N;, p) node (Fig. 2a). Iteration is then per-

stlpp L
formed as follows: after the (s + 1)-th iteration for the sought function fDn »2 {or ch+1 ), coefficients
S
a (®) and Bi* (@) are calculated from the temperature values G,;pz’ (or @kJ" ) of the preceeding iteration.
It is to be noted that a change from & to ® (or ® — &) is effected on the common switching panel for potentio-

meters Rl and R2 with an array of plug sockets superposed in space. After the iteration cycle had been

* On the function potentiometer R2 one sets up the relation according to (7), where A= 1(@) may be pre-
scribed in the form of an analytical relation or from a table.
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completed (two to three iterations are usually sufficient for convergence within + 0,001 @ax Precision,
®max = 1), a voltage-potential distribution numerically equal to ek +1 (1/2) is established at the nodes of the

arithmetic circuit. The solution cI)k +1 /2 = Vg +(1/2) 4 is found on the function potentiometer R2 by the null
method, while the sought value of ®k * (1/ 2) is read on the integrator switching panel (the nhumber of the
socket holding the search plug SP is numencally equal to ®k + (1/ 2) Thus, the initial temperature dis-
tribution and the results of the solution are given in terms of functlon ®, although the solution is obtained
at the nodes of the arithmetic circuit in terms of function . The temperature distribution on lines
p=2,3,...,Ny—1 at times 7 = (k + (1/2))AT are found analogously. The resulting temperature field will
serve as the basis on which the temperature on the next fraction step k + 1 will be then determined. For
this one uses the arithmetic circuit shown in Fig. 2b, which is now moved along the nodal lines parallel
to the Y axis in the network field.

When at some nodal point (n, p) a temperature is reached equal to the solidification temperature @y,
one connects to the node (m, p), (n, p) of the arithmetic circuit (Fig. 2) an additional resistor Rggd through
which current I = (1-V,,)/Ry4q is fed to this node so as to make the potential at node (m, p), (n, p) equal
to &m. The current I is supplied at each fraction step until the equality

d
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will hold true.

Condition (24) signifies that the phase-transformation boundary is moving to the next nodal point in the
network field.

Experience has shown that the proposed method is effective in solving two- and three-dimensional
problems of heat conduction with moving boundaries, that it significantly reduces the number of components
in the simulating device (by a factor of 1.5+ N, approximately, with N denoting the number of nodal points
in the network field) which would be required in a resistance network according to the Liebmann method,
The application of static electrical integrators, which cannot match digital computers in terms of speed
and precision, may prove useful for various kinds of engineering calculations when high speed and high
precision are not the main considerations.

NOTATION
X =%/l is the dimensionless space coordinate;
Y=y/l ) is the dimensionless space coordinate;
AX, AY aretheincremenis alongthe respective space coordinates;
AT is the increment of time; ‘
Ny = I/ Ax;
Ny = I,/Ay;
£(r) = 68)/ 1 is the location of the moving boundary;

X(®) =A@U)/Amax  is the thermal conductivity;
c(®) = cU)/cmin is the specific heat;
a(®) = A(@)/c(@)

@ = U/Umax is the dimensionless temperature;
T is the temperature, °K;
Om = Um/Umax is the phase-transformation temperatures;

Ly = L/eminUmax 18 the dimensionless heat of phase transformation;
T = Amaxt/ pcmmﬁ is the dimensionless time;

Bi = ali/Amax is the dimensionless coefficient of heat transfer;
Bi* (@) = Bi + £0/Amax *100[(Tsur/100)° + (Tgyy/100)*(Tamp/100) + (Tg,1,/100)(Tamb/100)? + (Tamp/100)°];
o is the Stefan—Boltzmann constant;
£ is the emissivity;
p is the density;
i3 is the defined by Eq. (7);
8
Sm= | A(©)d0;
Q
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Beff = 2¢gur—Osur;

Ry, n» Radds Ra are the resistors in the arithmetic circuit, referred to the scale value R*;

R1 is the linear potentiometer;

R2 is the function potentiometer;

NG is the null-compensation galvanometer;

SP is the search plug;

vV =U/U, is the voltage referred to the voltage of the potentiometer supply Uy;

d is the number of time steps through which the moving boundary is displaced by one
step on the AX(AY) grid;

Iy =/l

Subscripts:

H=X/AX: 0,1,2,.o-,N1;
p=Y/AY:0,1,2,...,Ny,

sur refers to surface;
amb refers to surrounding medium;
m refers to phase transformation (temperature);

Superscripts:

k=1/A7r:0,1,2,...;
s refers to the number of iteration.
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